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An expression is obtained for the density distribution of the optical thickness in a randomly 
inhomogeneous medium such as a boiling layer .  In the approximation of scat ter ing " forward .  
and "backward n with respect  to the direct ion of the ray  but with allowance for the angular dis-  
tribution of the radiation, the problem of the t ransmiss iv i ty  and refleetivity is solved for  the 
randomly inhomogeneous medium. 

A typical example of a randomly inhomogeneous medium is a boiling layer .  The t r ans fe r  of radiation 
in a randomly inhomogeneous scat ter ing medium in the approximation of weak inhomogeneity was con- 
s idered in [1, 2]. 

1. The probabili ty that a photon passes  unattenuated a path in a medium with mat te r  density p(x) on 
the ray path is 

P ~-- e -~, (1) 

whe re 
l 

5' 

is the optical thickness, This probabili ty is determined by averaging the t ransmiss ion  over an ensemble 
each of whose te rms  has the same value of p(x) along the ray path but for which the distribution of par t ic les  
in each sys tem of the ensemble is different. The averaging over the ensemble in this case can be replaced 
by averaging over the area  of the pencil of rays.  The size of the pencil must be much grea te r  than that of 
the part icles  of the medium and the mean distance between them but less than the size of the inhomogenei- 
ties of the density p(x). In a randomly inhomogeneous medium the optical thickness takes different values 
~- with probability density f(T). The mean value can be found by averaging over an ensemble each of whose 
members  has a different value of p(x) along the ray path. Using the ergodici ty of the system,  the average 
over the ensemble in the second case can be replaced by averaging with respect  to the time. For  the mean 
probabili ty of a photon t ravers ing  a path l without attenuation we obtain 

e-r : : :  .1 f (r) e--~dr. (3) 
0 

If the homogeneities are small, then (3) can be represented in the form 

o7 (4) 
,: e - ' ~  :~ ~ e  - ' ~  1 - 2 X  , -  . 

The var iance ~r = ( ( r -  (r)) 2) can be expressed in t e rms  of the corre la t ion  function of the density of the 
mat te r :  

l 

~ = 2~ ~ ,I (z - x) K,, (x) dx. (5) 
0 

The express ion (4) with allowance for (5) was used in [1]. 
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2. To determine the function fff) we use a packet model.  Suppose that on the ray  path there are  n 
packets  with a probabil i ty determined in accordance  with Po i s son ' s  formula,  which holds under fa i r ly  gen-  
e ra l  assumptions [3]: 

P n - -  (noOn e - " ' z ,  (6) 
n! 

We approximate the density distr ibution of the packets with respec t  to the optical thicknesses for  a ray  that 
in te rsec ts  a packet randomly by the gamma  distribution: 

~t~+~_ 
r p ('r.) = " Tree -~'~. (7) 

r ( m +  ] )  

The mean optical thickness of a packet is 

"q = (m -? 1)/a. (8) 

The density distr ibution with respec t  to the optical th icknesses  for  a r ay  that has passed through the me-  
dium has the form 

.( n ~ " e  - ( ' >  
f ('O n! f~ (~)' (9) 

n=O 

whe re 
3: 

f,, (~) = j" f,,_2 (~ - -  ~') r (~') d~'; 
0 

Per fo rming  a Laplace t ransformat ion  in (9) and noting that 

f~, (s) = [~* (s)]", 

as a t ransformat ion  of a convolution [4], we find 

f*(S) =:e - n e:":~*(~), 
where 

~* (s) = ~ ' " %  (~ -:- s) " '~'. 

Inverting the Laplace t ransformat ion,  we obtain 

n 1 / m @ l  - -  n - - o ~  o~ 
f (~:) = e-- ~ (~) -!- ~ ', n " e 

Using (15), we find the mean value of the optical thickness:  

the var iance  

i T } = :  < 1l. T 1 ,  

o m-4 2 ~ -  
Cr = ' 

m - i -  1 <n 

and  the  m e a n  p r o b a b i l i t y  of  p a s s a g e  of  a p h o t o n  wi thou t  a t t e n u a t i o n :  

where 

[at ( n ~ b.,+l ](.~+l)n--~ 

n!F [(m + l)n] 

,(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

( e -~  = e -~eff ,  (18) 

(19) 

The constants ~h, 

0~ I m-t-1 

The quantity Tel f in a randomly inhomogeneous medium is less than the mean value ('r}. 
<n), and m must  be found experimental ly .  

If (n) >> 1 and I n -  ( n ) l / ( n )  << 1, the distr ibution (9) goes over  into a normal  distr ibution with va r i -  
ance (17). For  the proof one notes that in accordance  with the centra l  limit theorem the distr ibution fn as 
n - -  ~ tends to normal  distribution, the Po issondis t r ibu t ion  goes over  into a Gaussian distribution, and the 
summat ion  in (9) can be replaced by integration. 
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3. To  calcula te  radia t ive  heat  exchange in a sca t t e r ing  medium we adopt the quasi one-d imens ional  
approximat ion  [7], the e s sence  of which cons is t s  of approximat ing the phase function by the express ion  

~ (.Q.fi') = a6(1 + Q.fi') + b8 (1 - - f i .5 ' ) ,  (20) 

where  a is the probabi l i ty  of backward sca t t e r ing  and b is the probabi l i ty  of forward  scat ter ing,  i .e. ,  we 
a s s u m e  that sca t t e r ing  in an inf ini tes imal  volume of the medium occurs  only fo rward  or backward  along 
the r a y  path. In this approximat ion  the geome t ry  of the medium is taken into account r igorous ly  and the 
phase  function is specif ied by the single p a r a m e t e r  

= 9 - -  6 , (21) 
a 

which de t e rmines  the f rac t ion  of radia t ion s c a t t e r e d  forward  in an e l e m e n t a r y  sca t t e r ing  event.  

The  solution of the one-d imens ional  t r a n s f e r  p rob lem is well known [7]. 
f lect ion and t r a n s m i s s i o n  it has  the f o r m  

1 - -  e - ~ u *  
G = R. 

1 - -  R ~  e - 2 •  ' 

- -  e - ~ ' r  

R~ x :- 7 - -  1 , 
•  

• = [1 - -  27~ - -  7* (i - -  2~)1 '/2 , 

For  the coefficient  of r e -  

(22) 

( 2 3 )  

( 2 4 )  

(25)  

where 7 is the ra t io  of the coefficient  of sca t t e r ing  to the coefficient  of at tenuation.  

Assuming that  h e m i s p h e r i c a l  radiat ion is incident on the l a y e r ,  for  the t r a n s m i s s i v i t y  and r e f l e c -  
t ivity of the l aye r  in the quas i -one-d imens iona l  approximat ion we have 

1 

D = 2 (1 - -  R 2) ,u d$~, 
�9 . 1 - -  R ~  e -2'~'~~ 

o 
1 i' 1 - -  e - 2 • 1 7 6  R = 2R| u R~ dp. 

, ' I ~ e - 2 • 1 7 6  

0 

Here  the medium is a ssumed  homogeneous or  with s t r in ted- inhomogeneous  dis t r ibut ion of the densi ty  of 
the attenuating m a t t e r .  

In the case  7 = 1 (medium without absorption) we obtain f rom (26) 

(26) 

(27) 

D(I,  T o ) = l - - c T o [  1 - -  C ~ ~  In 2+cT~  t (28) 
" 2 C %  ' 

where c = 2(1-~).  

Compar i son  with the exact  solution, obtained in t e r m s  of the moment s  of A m b a r t s u m y a n ' s  functions 
[5], for  a spher i ca l  phase function shows that the accu racy  in the calculat ion of R and D in the quas i -one-  
d imensional  approximat ion  for  a plane l ayer  is be t t e r  than the accuracy  of the S c h w a r z s e h i l d - S c h u s t e r  
approximat ion  except  for  the ease  R0-0 -'* ~) = Rr when the two approximat ions  a r e  the s a m e .  

Using the expansion 

( 1  - -  R ~  e-sx'c~ -1 ~ 1 -~ R ~  e -2xT"/~ + �9 �9 �9 , (29) 

we can wri te  (25) and (26) in the f o r m  

TR| ~ R~E8 [(2k + I) • (30) D = 2 ( I  ' 2 
k = 0  

R = R| -- 2R| (I-- R~) ~ R~G [(2~ --', 2) ~%]. (31) 
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When 7 # 1 the s e r i e s  converge  rapidly .  
t e r m s .  Informat ion  about the exponential  in tegra ls  of third o rder :  

1. 

E 3 (x) = .I [ *e-*/~*d~ (32) 
0 

can be found, for  example ,  in [6]. 

4. We a s s um e  that  on the ave rage  the randomly inhomogeneous med ium is i so t ropic .  The p rob lem 
cons i s t s  of calculat ing the mean  values  of R and D for  a plane l aye r .  We p e r f o r m  the averaging  inde- 
pendent ly  for  all  r ays ,  using the densi ty  (15). It follows f r o m  (15) that 

This  re la t ion  is bas ic  for  the solution of the p rob l em.  Using (3~.) and (33) and noting that 

( n > = noL/~t , (34) 

where L is the thickness of the layer, we find from (30) and (31) 

2 [-( S]l, <D>----2(I--R~) R ~ E .  { noL l ~@(2k@I)%, 
k=0 

2 " 1  [ ; .  r"] j 
k=0 

At the s a m e  t ime 

For  example, when 7 < 0.8 it is suff icient  to take only two or  three  

(35) 

(36) 

:: D ) >D( <: % ~), (37) 

~, R : --,~ R( < ~0 > ). (38) 

Experiments using a laser beam to probe a boiling layer that I performed in conjunction with R. V. 
I~omyakov, V. M. Kalemenev, and V. A. Viktorov showed that for a boiling layer one can assume m = 2. 

This  theory  can be used to e s t ima te  the influence of f luctuations when one is calculat ing radia t ive  
For  example ,  i f n 0 L = 5 ,  ce=7,  m = 2 ,  7 =0-5,  and the phase  

,( D ,;/D( .( % ". ) = t.35. 

(39) 

heat  exchange in a r a r e f i ed  boiling l aye r .  
function is spher ica l ,  then 

The degree  of b lackness  of the layer  is 

e) = I - -  ( D ' ~ - - , R ' : .  

<n} is 
n o is 
l is 
L is 
ro is 
# is 
~'1 is 
f(r) is 

F is 
5 is 

is 
< ) is 

r e f  f is 
7 is 

is 
R~ is 
m 

R , D  

N O T A T I O N  

the mean  num ber  of packets  on a r ay  path in the medium;  
the mean  num ber  of packets  on unit length; 
the length of a r ay  path in the medium;  
the th ickness  of the l aye r ;  
the optical  th ickness  of the l aye r ;  
the cosine of the angle between the d i rec t ion  of the radia t ion and the no rma l  to the planes;  
the mean  optical  th ickness  of a packet ;  
the densi ty  d is t r ibut ion  of the optical  th icknesses ;  
the g a m m a  function; 
the del ta  function; 
a unit vec to r  in the d i rec t ion  of the radiat ioni  
the mean -va lue  symbol ;  
the effect ive  optical  th ickness ;  
the ra t io  of the coeff icient  of sca t t e r ing  to the coeff icient  of  at tenuation; 
the p a r a m e t e r  that c h a r a c t e r i z e s  the phase  function; 
the re f lee t iv i ty  of a semi - in f in i t e  medium;  

is the p a r a m e t e r  that  c h a r a c t e r i z e s  the f o r m  of the densi ty  dis t r ibut ion;  
a r e  th e re f lec t iv i ty  and t r a n s m i s s i v i t y  of the l ayer .  
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